Fungal endocarditis: what do we know in 2019?

Authors: Ganesh Kumar K Ammannaya, Ninada Sripad

Article type: Review article

Received: April 30, 2019.

Accepted: June 14, 2019.

Published online: June 19, 2019.

ISSN: 0022-9032

e-ISSN: 1897-4279

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.
FUNGAL ENDOCARDITIS: WHAT DO WE KNOW IN 2019?
SHORT TITLE: FUNGAL ENDOCARDITIS 2019

Dr. Ganesh Kumar K Ammannaya¹* MBBS, MS, MCH CVTS, MEBCTS,
Dr. Ninada Sripad² MBBS, MD

1. Department of Cardiovascular & Thoracic Surgery, Lokmanya Tilak Municipal
 Medical College & General Hospital, Sion, Mumbai, India
2. Department of Microbiology, Goa Medical College, Goa, India

*Corresponding Author

Email: doc.ammannaya@gmail.com Phone : +91 9900409207
Dept. of CVTS, Lokmanya Tilak Municipal Medical College & General Hospital, Sion,
Mumbai – 400022, India

CONFLICT OF INTEREST: None declared.
ABSTRACT

Fungal endocarditis (FE) is an infrequent, but a lethal condition. Candida and Aspergillus species are the two most commonly implicated pathogenic fungi. Clinical presentation is most often that of a fever of unknown origin which is hard to differentiate from bacterial endocarditis. The diagnosis of FE is extremely challenging and now shifting towards molecular diagnostic techniques. Rapid and aggressive treatment with a combination of antifungal therapy and surgical debridement is imperative to improve outcomes.

Keywords: antifungal therapy, Aspergillus, Candida, Fungal endocarditis

INTRODUCTION

Fungal endocarditis (FE) is an uncommon, yet emerging entity accounting for 2-4% of all cases of infective endocarditis [1,2]. It carries an exceptionally high mortality rate of 30-50%, which can be attributed to its association with immunocompromised patients, delayed diagnoses owing to negative blood cultures and frequent failure of antifungal therapy alone, in the absence of surgery. Additionally, a high recurrence rate makes it a therapeutic challenge to this day [3-5]. Furthermore, the diagnosis of FE is equally challenging, that requires a high degree of clinical suspicion [6].
ETIOLOGY AND RISK FACTORS

Candida and Aspergillus are the two prime etiologic agents of FE. Candida species account for \(\sim 50\% \) of all cases of FE. Candida albicans is implicated in half of these cases, while other species of Candida, such as C. parapsilosis, C. krusei, C. glabrata and C. tropicalis account for the remaining cases. Aspergillus species (A. fumigatus, A. flavus, A. niger and A. terreus) account for 25% cases of FE and a wide variety of other infrequent fungi such as Histoplasma sp., Cryptococcus neoformans, Trichophyton sp., Microsporum sp., Fusarium sp., Paecilomyces sp., Pseudallescheria boydii, Rhodotorula mucilaginosa and Cunninghamella sp. are implicated in the remaining 25% of cases, as listed in (Table 1). Aspergillus is noted more commonly with advancing age, while the incidence of Candida FE is higher in the neonate and younger population \([1,7-10]\).

FE seldom occurs in healthy individuals and is most commonly associated with immunocompromised states, intravenous drug use, patients with prosthetic valves and intravascular devices or those who have had previous cardiac surgery, prolonged use of broad-spectrum antibiotics, indwelling central venous catheters, long-term parenteral nutrition and neonates. Native valve FE can occur in organ transplants recipients who are on immunosuppressive agents, patients with myelodysplastic syndrome, and patients on long-term glucocorticoids and cytotoxic drugs \([11,12]\). Multiple risk factors in a single patient is more likely to cause FE, and bacterial co-infections can be a refractory condition \([9,12]\). In neonates, right atrium is most commonly affected, while, mitral or aortic valve is affected more often in adults \([7,12,13]\).
CLINICAL PRESENTATIONS

FE usually presents as sub-acute endocarditis and its early recognition is very challenging as it lacks the classic signs and symptoms of bacterial endocarditis [2]. The most common presentation of FE is fever of unknown origin which is usually prolonged (> 2 weeks) and is often associated with chills, sweating and fatigue. A new onset murmur or change in the quality of a previously recognized murmur is another common finding in patients with suspected FE [12]. FE should also be considered in patients with uncontrolled fever of unknown origin with peripheral embolization in the extremities, brain, lung, kidneys, and gastrointestinal tract. Septic pulmonary embolism usually presents with fever, dyspnea, pleuritic chest pain, cough, and hemoptysis. Embolism to the gastrointestinal tract may present as an acute abdomen secondary to acute mesenteric ischemia. With valvular destruction, a patient with FE may present with heart failure. The clinical signs may range from weight loss, clubbing, petechial rash, splenomegaly, hypotension, septic shock and death. It is unusual to see peripheral findings unique to a particular fungal infection, such as cutaneous macro-nodules, that is peculiar to candidiasis [14]. Patients with multi-chambered FE have been shown to present with sudden onset of angina with elevated troponins [10].

DIAGNOSIS

FE poses a significant diagnostic challenge with the burden of diagnosis largely lying with the clinicians. Blood cultures are negative in over 50% cases, despite demonstrable vegetations on echocardiography, making it difficult to meet the Duke Criteria [2,15]. Laboratory techniques
such as lysis centrifugation can improve the yield from blood cultures \cite{3,12}. Newer and quicker non-culture tests have been developed for the diagnosis of fungemia such as mannan antigen and antibody tests for candidemia, which has a sensitivity and specificity of 83% and 86% respectively \cite{16}. Likewise, 1,3 β-D-glucan has a sensitivity and specificity of 69.9% and 87.1% respectively \cite{2}. Detection of galactomannan along with 1,3 β-D-glucan can help diagnose FE caused by Aspergillus sp \cite{17}.

Histopathological examination is prudent in culture-negative cases that, often helps to determine the diagnosis from the examination of the explanted valve, peripheral emboli, or systemic ulcers \cite{8}. The molecular methods, such as polymerase chain reaction (PCR) to detect fungal nuclear material like DNA in blood or in explanted valves is 3-fold more sensitive than Gram staining and culture \cite{18}. PCR has been shown to be positive in all tissue samples and in 10/11 blood samples \cite{3}. Real-time PCR enables the calculation of the fungal load by quantifying gene copies. In an exhaustive review, Faraji et al \cite{19} have outlined the various targets of real-time PCR such as fungal 28S rDNA, fungal 18S rDNA and mycoplasma tuf gene. Newer ready to use kits have been developed to detect fungal sp. such as Candida albicans and Candida parapsilosis \cite{20}. More recently, next-generation sequencing (NGS) for the direct detection of pathogens from the resected valves have been used with a reported sensitivity of 97.6% as compared with 46.2% for blood culture and 17.1% for valve culture \cite{21}. NGS technology has a short turnaround time of 48 hours and can identify all types of microorganisms including fungi and viruses simultaneously apart from detecting antimicrobial resistance (AMR) gene in the identified species. This can not only aid the diagnosis of FE, but also guide the postoperative antibiotic therapy and prevent recurrences \cite{21}.
Echocardiography is an indispensable tool in the diagnostic evaluation of FE. The lesions are characteristically large, left-sided and occasionally non-valvular. Bilateral lesions are more common in immunocompromised patients. Echocardiography can also detect abscesses of the valve ring. Trans-esophageal echocardiography (TEE) is more sensitive and specific for the diagnosis of endocarditis than transthoracic echocardiography (TTE) [22].

TREATMENT

A multi-modality treatment is required for the successful management of FE. An early and aggressive surgical treatment is recommended (Class I indication, Level of Evidence B), in almost all patients with FE, in view of the extremely high mortality (due to fatal embolic attacks) and morbidity (valvular destruction and chordae rupture causing acute mitral insufficiency) among those who receive medical treatment alone, as summarized in (Table 2). The current guidelines as per the European Society of Cardiology (ESC), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the Infectious Diseases Society of America (IDSA) recommend liposomal (lipid formulation) amphotericin B with or without flucytosine or a high-dose echinocandin (caspofungin or micafungin or anidulafungin) for FE caused by Candida sp. and voriconazole with or without echinocandin or amphotericin B for FE due to Aspergillus, each of which is combined with early valve replacement surgery of the infected prosthetic or native valve, along with the careful and thorough debridement of all infected tissues [18,23-25]. In the largest meta-analysis of prosthetic valve endocarditis including 32 studies, Mihos CG et al[26], found that the prevalence of prosthetic valve FE was 6-8% and majority (upto 56%) of the cases required valve explantation, debridement and re-implantation of the prosthetic valve. Aortic
root replacement, using the Bentall or Cabrol approach, is usually needed for infections of the aortic valve because of the high incidence of perivalvular abscesses. Combined antifungal therapy appears to be superior to monotherapy owing to a synergistic effect. Intravenous antifungal therapy is generally continued for ~ 6-8 weeks (not less than 4 weeks). Once the patient has stabilized and follow up blood cultures are negative, chronic suppressive therapy with oral fluconazole, for those with susceptible organisms, is appropriate (Class IIa indication; Level of Evidence B). In those with infected prosthetic material, fluconazole may need to be lifelong. For those who are not susceptible to fluconazole, oral voriconazole or posaconazole can be considered. If fungi continue to be isolated from blood cultures obtained after 1 week of treatment, they should also be susceptibility tested, as resistance may emerge on therapy. For Aspergillus endocarditis, voriconazole is used for both induction and long-term suppression. For FE caused by Histoplasma sp. is managed with the liposomal amphotericin B followed by oral itraconazole for at least 12 months.

In FE associated with pacemakers and implantable cardioverter and defibrillators (ICDs), the infected pacemakers and cardiac defibrillators should be removed, and intravenous antifungal therapy should be initiated. For ventricular assist devices that cannot be removed, the antifungal regimen should be started, and chronic suppressive therapy with fluconazole (if susceptible) should be continued as long as the device is in place. In high-risk patients presenting with prolonged fever, empiric antifungal therapies are necessary. Thus, FE mandates an aggressive treatment strategy, even when the patients still have fever and a negative blood culture. With the advent of new and effective antifungal agents, surgery may be safer than before. Finally, in neonates, medical therapy alone is as successful as combined therapy,
although each case should be considered on its merit. Indications of surgical intervention include the risk of disseminated infected emboli, increased mobility of the vegetation or its progressive enlargement, while on treatment and the hemodynamic instability, congestive heart failure, valve dehiscence, and perivalvular abscess \[^{31}\].

OUTCOMES

Several studies have shown an association between early surgical intervention and a lower mortality in patients with FE in general or in specific subgroups of patients such as those with heart failure or paravalvular complications. Subgroup analysis has also indicated a lower in-hospital and 1-year mortality with early surgery \[^{25}\]. Immunocompromised patients tend to have a far worse outcome, with an increased rate of recurrence and embolization \[^{32}\].

In the largest prospective study including 70 cases of FE due to Candida sp., Arnold CJ et al \[^{4}\] showed, that the all-cause in-hospital mortality of the overall cohort was 36%, and 59% at 1 year. Congestive heart failure, persistently positive blood cultures, older age, and intracardiac abscess were found to be a predictors of both in-hospital and 1-year mortality. More recently, in 2018, in a separate binational study of a population of 41 patients of FE due to Candida sp. Rivoisy et al \[^{33}\], showed a 6 month cumulative mortality of 37% among patients with prosthetic valve endocarditis and that of 57% among patients with native valve endocarditis due to Candida sp.
FE due to Aspergillus sp. is more commonly associated with embolic phenomena and the organs most frequently involved are the brain, kidneys, spleen and lungs. Myocardial infarction (MI) due to Aspergillus embolism often complicates the differential diagnosis of common MI. The use of recombinant tissue plasminogen activator (TPA) in this context, is based on the composition of FE vegetation that consists of not only the colonizing fungus but also of platelets and fibrin\(^3\). After surgical debridement and antifungal therapy with liposomal amphotericin B or voriconazole, the 12-month survival rate has been shown to be 82%\(^3\). Kalokhe et al \(^3\), in 2010, showed that in a review including 53 case reports of FE due to Aspergillus sp., only 4% of cases were treated successfully with antifungal therapy alone, while even with surgical therapy, the survival rate was 32%. This poor outcome can be in part attributed to the immunocompromised state of the patients and increased incidence of embolization. Hence, an empirical use of antifungal therapy should be initiated in immunosuppressed patient with persistent fever, when antibiotics are rendered ineffective\(^{12}\).

CONCLUSION

Despite novel molecular diagnostic tools and several advancements in antifungal therapy, FE continues to carry a poor prognosis. The critical care physician will continue to see a rise in the number of cases of FE in the near future, because of an aging population, growing number of immunocompromised patients, and the increasing frequency of implantation of intravascular devices\(^1,2,12\). A high index of suspicion needs to be exercised in these high-risk patients when presenting with prolonged fever. Early diagnosis and prompt surgical intervention coupled with
optimal antifungal therapy is still our only bet to reduce the exceedingly high mortality and morbidity associated with FE.

REFERENCES

Table 1: ETIOLOGY OF FUNGAL ENDOCARDITIS

<table>
<thead>
<tr>
<th>Candida species (50%)</th>
<th>Aspergillus species (25%)</th>
<th>Others (25%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans (25%)</td>
<td>A. fumigatus</td>
<td>Histoplasma sp.</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>A. flavus</td>
<td>Cryptococcus neoformans</td>
</tr>
<tr>
<td>C. krusei</td>
<td>A. niger</td>
<td>Trichophyton sp.</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>A. terreus</td>
<td>Microsporum sp.</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td></td>
<td>Fusarium sp.</td>
</tr>
</tbody>
</table>
<pre><code> | | Paecilomyces sp. |
 | | Pseudallescheria boydii |
</code></pre>
Table 2: CURRENT RECOMMENDATIONS IN THE MANAGEMENT OF FUNGAL ENDOCARDITIS \cite{23,24}

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>RECOMMENDATION</th>
<th>CLASS</th>
<th>LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Early Valve surgery for Left sided NVE caused by fungi</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>2.</td>
<td>Early Valve surgery for PVE caused by fungi</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>3.</td>
<td>After completion of initial parenteral therapy, lifelong suppressive therapy with an oral azole is reasonable</td>
<td>IIa</td>
<td>B</td>
</tr>
</tbody>
</table>

NVE – native valve endocarditis, PVE – prosthetic valve endocarditis.